Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yavuz Köysal, ${ }^{\text {a }}$ Șamil Ișık, ${ }^{a}$ Nazan Ocak Iskeleli, ${ }^{\text {b }}$ Mahmut Durmuș ${ }^{\text {c }}$ and Vefa Ahsen ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, ${ }^{\text {b }}$ Department of Science Education, Sinop, Faculty of Education, Ondokuz Mayıs University, 57000, Sinop, Turkey, and ${ }^{\text {c }}$ Department of Chemistry, Gebze Institute of Technology, PO Box 141, Gebze, 41400, Turkey

Correspondence e-mail: yavuzk@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.071$
$w R$ factor $=0.244$
Data-to-parameter ratio $=15.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-[2-(2-Thienyl)ethoxy]phthalonitrile

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{\mathrm{S}}$, the thienyl and phthalonitrile planes make a dihedral angle of 57.92 (2) ${ }^{\circ}$.

Comment

Phthalocyanines have continuously been the subject of research due to their wide-ranging applications, such as organic pigments, chemical sensors, electrochromic display devices, photovoltaic cells, xerography, catalysis, non-linear optics and optical data storage, and also as carrier-generation materials in the near IR (Leznoff \& Lever, 1993; McKeown, 1998).

(I)

The geometry of the phthalonitrile group in the title compound, (I), agrees with that of previously reported structures (Janczak \& Kubiak, 1995; Tian et al., 2002; Köysal et al., 2003, 2004). The benzene and thienyl rings are both planar, with maximum deviations of 0.01 (3) \AA for atom C12 and 0.01 (7) \AA for atom C2, and they are twisted by a dihedral angle of $57.92(2)^{\circ}$.

Experimental

2-(2-Thienyl)ethanol ($1.00 \mathrm{~g}, 7.8 \mathrm{mmol}$) and 3-nitrophthalonitrile $(1.35 \mathrm{~g}, 7.8 \mathrm{mmol})$ were dissolved in dry dimethyl sulfoxide (30 ml) with stirring under a nitrogen atmosphere. Dry fine-powdered potassium carbonate ($5.38 \mathrm{~g}, 39 \mathrm{mmol}$) was added in portions every 10 min . The reaction mixture was stirred for 24 h at room temperature and poured into ice-water (200 g). The product was filtered off and washed with distilled water. Recrystallization from ethanol gave a white product (yield $1.23 \mathrm{~g}, 62 \%$). Single crystals were obtained by slow evaporation of an absolute ethanol solution at room temperature (m.p. 377 K). Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$: C 66.12, H 3.96, N 11.02\%; found: C 66.01, H 3.89, N 11.26\%.

Figure 1
The molecular structure of the title compound, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=254.30$
Orthorhombic, Pbca
$a=8.0888(4) \AA$
$b=7.1356(4) \AA$
$c=44.235(3) \AA$
$V=2553.2(3) \AA^{3}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.865, T_{\text {max }}=0.982$

$$
Z=8
$$

$D_{x}=1.323 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, yellow
$0.70 \times 0.43 \times 0.08 \mathrm{~mm}$

29377 measured reflections
2537 independent reflections 1370 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=26.1^{\circ}$

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.071
$$

H-atom parameters constrained

$$
w R\left(F^{2}\right)=0.244
$$

$$
S=0.95
$$

$$
2537 \text { reflections }
$$

$$
163 \text { parameters }
$$

H atoms were positioned geometrically and refined using a riding model, with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{CH}_{2} \mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Janczak, J. \& Kubiak, R. (1995). Acta Cryst. C51, 1399-1401.
Köysal, Y., Işık, Ş., Akdemir, N., Ağar, E. \& Kantar, C. (2004). Acta Cryst. E60, o285-o286.
Köysal, Y., Şamil, I., Akdemir, N., Erbil, A. \& McKee, V. (2003). Acta Cryst. E59, o1423-o1424.
Leznoff, C. C. \& Lever, A. B. P. (1993). Phthalocyanines: Properties and Applications, Vol. 2. Weinheim: VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Tian, J.-Z., Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. \& Xu, J.-H. (2002). Acta Cryst. E58, o151-o153.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

